Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Ann Neurol ; 94(6): 1136-1154, 2023 12.
Article in English | MEDLINE | ID: mdl-37597256

ABSTRACT

OBJECTIVE: Rare variants of CCNK (cyclin K) give rise to a syndrome with intellectual disability. The purpose of this study was to describe the genotype-phenotype spectrum of CCNK-related syndrome and the underlying molecular mechanisms of pathogenesis. METHODS: We identified a number of de novo CCNK variants in unrelated patients. We generated patient-induced pluripotent stem cells (iPSCs) and neural progenitor cells (NPCs) as disease models. In addition, we constructed NPC-specific Ccnk knockout (KO) mice and performed molecular and morphological analyses. RESULTS: We identified 2 new patients harboring CCNK missense variants and followed-up 3 previous reported patients, which constitute the largest patient population analysis of the disease. We demonstrate that both the patient-derived NPC models and the Ccnk KO mouse displayed deficient NPC proliferation and enhanced apoptotic cell death. RNA sequencing analyses of these NPC models uncovered transcriptomic signatures unique to CCNK-related syndrome, revealing significant changes in genes, including WNT5A, critical for progenitor proliferation and cell death. Further, to confirm WNT5A's role, we conducted rescue experiments using NPC and mouse models. We found that a Wnt5a inhibitor significantly increased proliferation and reduced apoptosis in NPCs derived from patients with CCNK-related syndrome and NPCs in the developing cortex of Ccnk KO mice. INTERPRETATION: We discussed the genotype-phenotype relationship of CCNK-related syndrome. Importantly, we demonstrated that CCNK plays critical roles in NPC proliferation and NPC apoptosis in vivo and in vitro. Together, our study highlights that Wnt5a may serve as a promising therapeutic target for the disease intervention. ANN NEUROL 2023;94:1136-1154.


Subject(s)
Intellectual Disability , Neural Stem Cells , Mice , Animals , Humans , Neural Stem Cells/metabolism , Signal Transduction/genetics , Cyclins/metabolism , Apoptosis
2.
Front Pediatr ; 11: 978879, 2023.
Article in English | MEDLINE | ID: mdl-37168803

ABSTRACT

Osteopetrosis is a genetic condition of the skeleton characterized by increased bone density caused by osteoclast formation and function defects. Osteopetrosis is inherited in the form of autosomal dominant and autosomal recessive manner. We report autosomal recessive osteopetrosis (ARO; OMIM 611490) in a Chinese case with a history of scarce leukocytosis, vision and hearing loss, frequent seizures, and severe intellectual and motor disability. Whole-exome sequencing (WES) followed by Sanger sequencing revealed novel compound heterozygous mutations in the chloride channel 7 (CLCN7) gene [c.982-1G > C and c.1208G > A (p. Arg403Gln)] in the affected individual, and subsequent familial segregation showed that each parent had transmitted a mutation. Our results confirmed that mutations in the CLCN7 gene caused ARO in a Chinese family. Additionally, our study expanded the clinical and allelic spectrum of the CLCN7 gene and enhanced the applications of WES technology in determining the etiology of prenatal diagnoses in fetuses with ultrasound anomalies.

3.
Eur J Hum Genet ; 31(1): 112-121, 2023 01.
Article in English | MEDLINE | ID: mdl-36376392

ABSTRACT

PURA-related neurodevelopmental disorders (PURA-NDDs) include 5q31.3 microdeletion syndrome and PURA syndrome. PURA has been proposed as a candidate gene responsible for 5q31.3 microdeletion syndrome. Phenotype comparisons between patients with PURA mutations and 5q31.3 microdeletions encompassing more than PURA gene are lacking. A total of 25 previously undescribed Mainland China patients were evaluated. Clinical data were obtained from medical record review and standardized medical history questionnaire. Clinical profile and genetic spectrum of the patients with PURA syndrome and genotype-phenotype correlations between PURA mutations group and 5q31.3 microdeletions group were analyzed. Our identified seventeen de nove PURA variants were novel, and two recurrent frameshift variants, c.697_699del (p.F233del) and c.159dup (p.L54Afs*147) were detected in the four independent pedigrees. One patient with 5q31.3 microdeletion further supported the shortest overlapping region only contains PURA and IGIP gene. Developmental delay/intellectual disability, neonatal hypotonia, neonatal feeding difficulties, hypersomnolence and dysmorphic features were prominent clinical features in PURA syndrome. There was no significant difference between two groups in incidence of neonatal problems, developmental delay and common medical comorbidities. We observed a higher frequency of abnormal brain MRI and specific facial dysmorphism in 5q31.3 microdeletion group. This is the first work describing a largest cohort of Mainland China patients broaden the clinical and molecular spectrum of PURA-NDDs. Our findings not only demonstrated that PURA haploinsufficiency was a major contributor to the important phenotypes of 5q31.3 microdeletion, but also implied that additional genes still played a role in the 5q31.3 microdeletion.


Subject(s)
Abnormalities, Multiple , Chromosome Disorders , Epilepsy , Intellectual Disability , Neurodevelopmental Disorders , Humans , East Asian People , Chromosome Deletion , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/genetics , Chromosome Disorders/genetics , Intellectual Disability/genetics , Epilepsy/genetics , Abnormalities, Multiple/genetics , Genetic Association Studies , Phenotype , DNA-Binding Proteins/genetics , Transcription Factors/genetics
4.
Clin Genet ; 103(2): 190-199, 2023 02.
Article in English | MEDLINE | ID: mdl-36309956

ABSTRACT

Variant prioritization is a crucial step in the analysis of exome and genome sequencing. Multiple phenotype-driven tools have been developed to automate the variant prioritization process, but the efficacy of these tools in clinical setting with fuzzy phenotypic information and whether ensemble of these tools could outperform single algorithm remains to be assessed. A large rare disease cohort with heterogeneous phenotypic information, including a primary cohort of 1614 patients and a replication cohort of 1904 patients referred to exome sequencing, were recruited to assess the efficacy of variant prioritization and their ensemble. Three freely available tools-Exomiser, Xrare, and DeepPVP-and their ensemble were evaluated. The performance of all three tools was influenced by the attributes of phenotypic input. When combining these three tools by weighted-sum entropy method (EWE3), the ensemble outperformed any single algorithm, achieving a rate of 78% diagnostic variants in top 3 (13% improvement over current best performer, compared to Exomiser: 63%, Xrare: 65%, and DeepPVP: 51%), 88% in top 10 and 96% in top 30. The results were replicated in another independent cohort. Our study supports using entropy-weighted ensemble of multiple tools to improve variant prioritization and accelerate molecular diagnosis in exome/genome sequencing.


Subject(s)
Algorithms , Exome , Humans , Exome/genetics , Entropy , Phenotype , Rare Diseases/genetics , Software
5.
Front Mol Neurosci ; 15: 1020949, 2022.
Article in English | MEDLINE | ID: mdl-36245917

ABSTRACT

Dendritic spines are small actin-rich protrusions essential for the formation of functional circuits in the mammalian brain. During development, spines begin as dynamic filopodia-like protrusions that are then replaced by relatively stable spines containing an expanded head. Remodeling of the actin cytoskeleton plays a key role in the formation and modification of spine morphology, however many of the underlying regulatory mechanisms remain unclear. Capping protein (CP) is a major actin regulating protein that caps the barbed ends of actin filaments, and promotes the formation of dense branched actin networks. Knockdown of CP impairs the formation of mature spines, leading to an increase in the number of filopodia-like protrusions and defects in synaptic transmission. Here, we show that CP promotes the stabilization of dendritic protrusions, leading to the formation of stable mature spines. However, the localization and function of CP in dendritic spines requires interactions with proteins containing a capping protein interaction (CPI) motif. We found that the CPI motif-containing protein Twinfilin-1 (Twf1) also localizes to spines where it plays a role in CP spine enrichment. The knockdown of Twf1 leads to an increase in the density of filopodia-like protrusions and a decrease in the stability of dendritic protrusions, similar to CP knockdown. Finally, we show that CP directly interacts with Shank and regulates its spine accumulation. These results suggest that spatiotemporal regulation of CP in spines not only controls the actin dynamics underlying the formation of stable postsynaptic spine structures, but also plays an important role in the assembly of the postsynaptic apparatus underlying synaptic function.

6.
Plant Physiol ; 190(4): 2519-2538, 2022 11 28.
Article in English | MEDLINE | ID: mdl-36135821

ABSTRACT

Polyploidization leads to novel phenotypes and is a major force in evolution. However, the relationship between the evolution of new traits and variations in the post-translational modifications (PTM) of proteins during polyploidization has not been studied. Acetylation of lysine residues is a common protein PTM that plays a critical regulatory role in central metabolism. To test whether changes in metabolism in citrus fruit is associated with the reprogramming of lysine acetylation (Kac) in non-histone proteins during allotetraploidization, we performed a global acetylome analysis of fruits from a synthetic allotetraploid citrus and its diploid parents. A total of 4,175 Kac sites were identified on 1,640 proteins involved in a wide range of fruit traits. In the allotetraploid, parental dominance (i.e. resemblance to one of the two parents) in specific fruit traits, such as fruit acidity and flavonol metabolism, was highly associated with parental Kac level dominance in pertinent enzymes. This association is due to Kac-mediated regulation of enzyme activity. Moreover, protein Kac probably contributes to the discordance between the transcriptomic and proteomic variations during allotetraploidization. The acetylome reprogramming can be partially explained by the expression pattern of several lysine deacetylases (KDACs). Overexpression of silent information regulator 2 (CgSRT2) and histone deacetylase 8 (CgHDA8) diverted metabolic flux from primary metabolism to secondary metabolism and partially restored a metabolic status to the allotetraploid, which expressed attenuated levels of CgSRT2 and CgHDA8. Additionally, KDAC inhibitor treatment greatly altered metabolism in citrus fruit. Collectively, these findings reveal the important role of acetylome reprogramming in trait evolution during polyploidization.


Subject(s)
Citrus , Proteomics , Lysine/metabolism , Proteome/genetics , Proteome/metabolism , Fruit/metabolism , Citrus/genetics , Citrus/metabolism , Acetylation , Protein Processing, Post-Translational
7.
World J Urol ; 40(5): 1211-1216, 2022 May.
Article in English | MEDLINE | ID: mdl-35149915

ABSTRACT

PURPOSE: To compare the clinical characteristics of pediatric urolithiasis patients with positive and negative molecular diagnoses. METHODS: The clinical characteristics corresponding to pediatric urolithiasis patients that had undergone exome sequencing at our hospital between January 2016 and May 2021 were collected. Genetic analysis results were used to separate patients into positive and negative molecular diagnosis groups. Multivariate logistic regression analyses adjusted for visiting age, sex, ethnicity, province, and body mass index were used to compare differences in medical history, diagnostic imaging findings, and renal function between individuals with and without molecular diagnoses. RESULTS: In total, 194 patients with pediatric urolithiasis of unknown etiology underwent exome sequencing and were included in the present study, of whom 63 obtained urolithiasis-related molecular diagnoses. Relative to cases without a molecular diagnosis, those with a positive molecular diagnosis were more likely to be associated with a positive family history (OR 2.84, 95% CI 1.29-6.29, p = 0.008), consanguineous parents (OR 24.7, 95% CI 1.34-454, p = 0.002), early onset (OR 1.26, 95% CI 1.09-1.45, p < 0.001), nephrocalcinosis (OR 10.6, 95% CI 3.06-36.6, p < 0.001), cast stone (OR 18.9, 95% CI 4.40-81.1, p < 0.001), multiple stones (OR 13.9, 95% CI 6.39-30.2, p < 0.001), bilateral stones (OR 7.04, 95% CI 3.47-14.2, p < 0.001), a lower estimated glomerular filtration rate (OR 1.17, 95% CI 1.07-1.28, p < 0.001), and chronic kidney disease (OR 26.9, 95% CI 1.42-526, p < 0.001). CONCLUSION: A positive family history, consanguineous parents, early onset, nephrocalcinosis, severe stone burden, and impaired renal function are signals of concern that are suggestive of inherited urolithiasis.


Subject(s)
Nephrocalcinosis , Renal Insufficiency, Chronic , Urolithiasis , Child , Female , Humans , Male , Retrospective Studies , Urolithiasis/diagnosis , Urolithiasis/genetics
8.
Gene ; 815: 146155, 2022 Mar 20.
Article in English | MEDLINE | ID: mdl-34995728

ABSTRACT

PURPOSE: Next generation sequencing-based exome sequencing can be used to identify genetic abnormalities in patients believed to be suffering from primary hyperoxaluria. We outline our efforts to improve the diagnostic capacity of exome sequencing for these patients. METHODS: We conducted a retrospective analysis of exome sequencing data from 77 pediatric urolithiasis patients with hyperoxaluria of unknown origin. Canonical exome sequencing analysis was performed to identify pathogenic variants in three known primary hyperoxaluria-related genes (AGXT, GRHPR, HOGA1) as per the guidelines of the American College of Medical Genetics. Then, extended exome sequencing analyses of 5'-untranslated region, non-canonical splicing site and copy number variant were performed on patients with negative diagnostic results in these three genes. RESULTS: Canonical exome sequencing analyses led to the diagnosis of primary hyperoxaluria in 20/77 (26%) patients, including eight, four, and eight patients diagnosed with type 1, 2 and 3 primary hyperoxaluria, respectively. Non-canonical splicing site analyses discovered a pathogenic variant in the HOGA1 gene, which led to the diagnosis of six additional patients with type 3 primary hyperoxaluria, while copy number variant analyses from exome sequencing data identified a 1.8 kb copy number loss that impacted the AGXT gene, resulting in the diagnosis of an additional type 1 primary hyperoxaluria case. CONCLUSIONS: Extended non-canonical splicing site and copy number variant analyses improve the diagnostic yield of canonical exome sequencing analysis for primary hyperoxaluria from 26% (20/77) to 35% (27/77) in 77 pediatric urolithiasis patients with hyperoxaluria.


Subject(s)
Hyperoxaluria, Primary/genetics , Oxo-Acid-Lyases/genetics , Transaminases/genetics , Urolithiasis/genetics , 5' Untranslated Regions , Alcohol Oxidoreductases/genetics , Child , Child, Preschool , DNA Copy Number Variations , Female , Humans , Infant , Male , Retrospective Studies , Exome Sequencing
9.
DNA Res ; 28(5)2021 Sep 13.
Article in English | MEDLINE | ID: mdl-34424285

ABSTRACT

Citrus nucellar poly-embryony (NPE) is a mode of sporophytic apomixis that asexual embryos formed in the seed through adventitious embryogenesis from the somatic nucellar cells. NPE allows clonal propagation of rootstocks, but it impedes citrus cross breeding. To understand the cellular processes involved in NPE initiation, we profiled the transcriptomes and DNA methylomes in laser microdissection captured citrus apomictic cells. In apomictic cells, ribosome biogenesis and protein degradation were activated, whereas auxin polar transport was repressed. Reactive oxygen species (ROS) accumulated in the poly-embryonic ovules, and response to oxidative stress was provoked. The global DNA methylation level, especially that of CHH context, was decreased, whereas the methylation level of the NPE-controlling key gene CitRWP was increased. A C2H2 domain-containing transcription factor gene and CitRWP co-expressed specifically in apomictic cells may coordinate to initiate NPE. The activated embryogenic development and callose deposition processes indicated embryogenic fate of nucellar embryo initial (NEI) cells. In our working model for citrus NPE initiation, DNA hyper-methylation may activate transcription of CitRWP, which increases C2H2 expression and ROS accumulation, triggers epigenetic regulation and regulates cell fate transition and NEI cell identity in the apomictic cells.


Subject(s)
Citrus , Citrus/genetics , Embryonic Development , Epigenesis, Genetic , Epigenome , Plant Breeding , Transcriptome
10.
J Pediatr Endocrinol Metab ; 34(10): 1323-1328, 2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34162030

ABSTRACT

OBJECTIVES: Achondroplasia and hypochondroplasia are the most common forms of disproportionate short stature, of which the vast majority of cases can be attributed to the hotspot missense mutations in the gene FGFR3. Here we presented cases with a novel cryptic splicing variant of FGFR3 gene and aimed to interrogate the variant pathogenicity. CASE PRESENTAITON: In whole exome sequencing of two patients with hypochondroplasia-like features, a de novo intronic variant c.1075 + 95C>G was identified, predicted to alter mRNA splicing. Minigene assay showed that this intronic variant caused retention of a 90-nucleotide segment of intron 8 in mRNA, resulting in a 30-amino acid insertion at the extracellular domain of the protein. This is the first likely pathogenic splicing variant identified in the FGFR3 gene and was detected in one additional patient among 26 genetically unresolved patients. CONCLUSTIONS: Our results strongly suggest that c.1075 + 95C>G is a recurrent mutation and should be included in genetic testing of FGFR3 especially for those patients with equivocal clinical findings and no exonic mutations identified.


Subject(s)
Osteochondrodysplasias/genetics , RNA Splicing/genetics , Receptor, Fibroblast Growth Factor, Type 3/genetics , Child, Preschool , China , DNA Mutational Analysis , Dwarfism/genetics , Dwarfism/pathology , Genetic Testing , HEK293 Cells , HeLa Cells , Humans , Infant , Introns/genetics , Male , Mutation, Missense , Osteochondrodysplasias/diagnosis , Osteochondrodysplasias/pathology , Polymorphism, Single Nucleotide
11.
Taiwan J Obstet Gynecol ; 60(2): 299-304, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33678331

ABSTRACT

OBJECTIVE: The present study aimed to determine the diagnostic value of prenatal chromosomal microarray analysis (CMA) for fetuses with several indications of being at high risk for various conditions. MATERIALS AND METHODS: This retrospective analysis included 1256 pregnancies that were prenatally evaluated due to high-risk indications using invasive CMA. The indications for invasive prenatal diagnosis mainly included ultrasound anomalies, high-risk for maternal serum screening (MSS), high-risk for non-invasive prenatal tests (NIPT), family history of genetic disorders or birth defects, and advanced maternal age (AMA). The rate of clinically significant genomic imbalances between the different groups was compared. RESULTS: The overall prenatal diagnostic yield was 98 (7.8%) of 1256 pregnancies. Clinically significant genomic aberrations were identified in 2 (1.5%) of 132 patients with non-structural ultrasound anomalies, 36 (12.7%) of 283 with structural ultrasound anomalies, 2 (4.5%) of 44 at high-risk for MSS, 38 (26.6%) of 143 at high-risk for NIPT, 11 (3.8%) of 288 with a family history, and 7 (2.1%) of 328 with AMA. Submicroscopic findings were identified in 29 fetuses, 19 of whom showed structural ultrasound anomalies. CONCLUSION: The diagnostic yields of CMA for pregnancies with different indications greatly varied. CMA could serve as a first-tier test for structural anomalies, especially multiple anomalies, craniofacial dysplasia, urinary defects, and cardiac dysplasia. Our results have important implications for genetic counseling.


Subject(s)
Chromosome Aberrations/statistics & numerical data , Chromosome Disorders/diagnosis , Microarray Analysis/statistics & numerical data , Adult , China , Chromosome Aberrations/embryology , Chromosome Disorders/embryology , Contraindications, Procedure , Female , Fetal Development/genetics , Humans , Maternal Serum Screening Tests/adverse effects , Microarray Analysis/methods , Pregnancy , Retrospective Studies , Risk Assessment , Ultrasonography, Prenatal/statistics & numerical data
12.
J Mol Neurosci ; 71(6): 1306-1319, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33405196

ABSTRACT

The existence of Gram-negative bacteria in the brain, regardless of underlying immune status has been demonstrated by recent studies. The colocalization of lipopolysaccharide (LPS) with Aß1-40/42 in amyloid plaques supports the hypothesis that brain microbes may be the cause, triggering chronic neuroinflammation, leading to Alzheimer's disease (AD). To investigate the behavioral changes induced by infectious neuroinflammation, we chose the third ventricle as the site of a single LPS injection (20 µg or 80 µg) in male Wistar rats to avoid mechanical injury to forebrain structures while inducing widespread inflammation throughout the brain. Chronic neuroinflammation induced by LPS resulted in depressive-like behaviors and the impairment of spatial learning; however, there was no evidence of the development of pathological hallmarks (e.g., the phosphorylation of tau) for 10 months following LPS injection. The acceleration of cholesterol metabolism via CYP46A1 and the retardation of cholesterol synthesis via HMGCR were observed in the hippocampus of rats treated with either low-dose or high-dose LPS. The rate-limiting enzymes of cholesterol metabolism (CYP46A1) in SH-SY5Y cells and synthesis (HMGCR) in U251 cells were altered by inflammation stimulators, including LPS, IL-1ß, and TNF-α, through the TLR4/MyD88/NF-κB signaling pathway. The data suggest that chronic neuroinflammation provoked by the administration of LPS into the third ventricle may induce depressive-like symptoms and that the loss of cholesterol might be a biomarker of chronic neuroinflammation. The lack of pathological hallmarks of AD in our model indicates that Gram-negative bacteria infection might not be a single cause of AD.


Subject(s)
Encephalitis/physiopathology , Maze Learning , Animals , Cell Line, Tumor , Cholesterol/metabolism , Cholesterol 24-Hydroxylase/metabolism , Encephalitis/etiology , Encephalitis/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Humans , Hydroxymethylglutaryl CoA Reductases/metabolism , Injections, Intraventricular , Interleukin-1beta/metabolism , Lipopolysaccharides/administration & dosage , Lipopolysaccharides/toxicity , Male , Rats , Rats, Wistar , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/metabolism , tau Proteins/metabolism
13.
Int J Mol Sci ; 23(1)2021 Dec 27.
Article in English | MEDLINE | ID: mdl-35008668

ABSTRACT

Though numerous studies have focused on the cell wall disassembly of bananas during the ripening process, the modification of homogalacturonan (HG) during fruit development remains exclusive. To better understand the role of HGs in controlling banana fruit growth and ripening, RNA-Seq, qPCR, immunofluorescence labeling, and biochemical methods were employed to reveal their dynamic changes in banana peels during these processes. Most HG-modifying genes in banana peels showed a decline in expression during fruit development. Four polygalacturonase and three pectin acetylesterases showing higher expression levels at later developmental stages than earlier ones might be related to fruit expansion. Six out of the 10 top genes in the Core Enrichment Gene Set were HG degradation genes, and all were upregulated after softening, paralleled to the significant increase in HG degradation enzyme activities, decline in peel firmness, and the epitope levels of 2F4, CCRC-M38, JIM7, and LM18 antibodies. Most differentially expressed alpha-1,4-galacturonosyltransferases were upregulated by ethylene treatment, suggesting active HG biosynthesis during the fruit softening process. The epitope level of the CCRC-M38 antibody was positively correlated to the firmness of banana peel during fruit development and ripening. These results have provided new insights into the role of cell wall HGs in fruit development and ripening.


Subject(s)
Fruit/growth & development , Fruit/metabolism , Musa/growth & development , Musa/metabolism , Pectins/metabolism , Antibodies/metabolism , Epitopes/metabolism , Fruit/anatomy & histology , Fruit/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Genes, Plant , Musa/anatomy & histology , Musa/genetics , Time Factors
14.
J Hum Genet ; 66(4): 409-417, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33040084

ABSTRACT

Long continuous stretches of homozygosity (LCSH) are associated with risk of recessive disorders. Though LCSH can be detected by SNP microarrays, additional testing is necessary to clarify the clinical significance. This study is to assess the yield of additional exome sequencing (ES) after LCSH detection and inform the likelihood of eventual diagnosis. In 2226 patients referred to SNP microarrays, 35 patients met the criteria of indicative LCSH. These patients were recruited and went through additional ES. The diagnostic yield was analyzed, and the LCSH pattern was compared between eventually diagnosed cases and those undiagnosed. The results showed additional ES attained a diagnostic yield of 31.4% (11/35), but only one-third of the yield (11.4%, 4/35) was relevant to LCSH. In contrast, two-thirds of the diagnostic variants (20%, 7/35) were de novo or dominantly inherited, irrelevant to the original LCSH finding. No particular LCSH pattern, including the chromosomal coverage or LCSH size, was found to associate with the diagnostic outcome. We concluded that additional ES after LCSH detection could reveal diagnostic variants, but it is strongly recommended to consider all possible inheritance mode, as the diagnostic variants may be irrelevant to the original LCSH finding.


Subject(s)
Genes, Recessive , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/pathology , Homozygote , Polymorphism, Single Nucleotide , DNA Copy Number Variations , Humans , Exome Sequencing
15.
World J Urol ; 39(7): 2759-2765, 2021 Jul.
Article in English | MEDLINE | ID: mdl-32936332

ABSTRACT

PURPOSE: To investigate the prevalence of inherited causes in an early onset urolithiasis cohort and each metabolic subgroup. METHODS: A retrospective analysis of both metabolic and genomic data was performed for the first 105 pediatric urolithiasis patients who underwent exome sequencing at our hospital from February 2016 to October 2018. Measurements included the diagnostic yield of exome sequencing in the entire cohort and each metabolic subgroup (hyperoxaluria, hypocitraturia, hypercalciuria, hyperuricosuria and cystine stone subgroups). The conformity between molecular diagnoses and metabolic evaluation was also evaluated. RESULTS: The present study involved a cohort of 105 pediatric patients with urolithiasis, from which diagnostic variants were identified in 38 patients (36%), including 27 primary hyperoxaluria and 11 cystinuria. In the metabolic subgroup analyses, 41% hyperoxaluria cases were primary hyperoxaluria caused by monogenic defects, and 100% of the causes of cystine stones could be explained by monogenic defects. However, no appropriate inherited causes were identified for hypocitraturia, hypercalciuria, or hyperuricosuria in the cohort. A high conformity (100%) was obtained between the molecular diagnoses and metabolic evaluation. CONCLUSION: Exome sequencing in a cohort of 105 pediatric patients with urolithiasis yielded a genetic diagnosis in 36% of cases and the molecular diagnostic yield varies substantially across different metabolic abnormalities.


Subject(s)
Urolithiasis/diagnosis , Child, Preschool , Female , Humans , Infant , Male , Retrospective Studies , Urolithiasis/genetics , Urolithiasis/metabolism , Exome Sequencing
16.
BMJ Open ; 10(12): e044028, 2020 12 24.
Article in English | MEDLINE | ID: mdl-33361083

ABSTRACT

OBJECTIVE: This study aimed to develop and externally validate a COVID-19 mortality risk prediction algorithm. DESIGN: Retrospective cohort study. SETTING: Five designated tertiary hospitals for COVID-19 in Hubei province, China. PARTICIPANTS: We routinely collected medical data of 1364 confirmed adult patients with COVID-19 between 8 January and 19 March 2020. Among them, 1088 patients from two designated hospitals in Wuhan were used to develop the prognostic model, and 276 patients from three hospitals outside Wuhan were used for external validation. All patients were followed up for a maximal of 60 days after the diagnosis of COVID-19. METHODS: The model discrimination was assessed by the area under the receiver operating characteristic curve (AUC) and Somers' D test, and calibration was examined by the calibration plot. Decision curve analysis was conducted. MAIN OUTCOME MEASURES: The primary outcome was all-cause mortality within 60 days after the diagnosis of COVID-19. RESULTS: The full model included seven predictors of age, respiratory failure, white cell count, lymphocytes, platelets, D-dimer and lactate dehydrogenase. The simple model contained five indicators of age, respiratory failure, coronary heart disease, renal failure and heart failure. After cross-validation, the AUC statistics based on derivation cohort were 0.96 (95% CI, 0.96 to 0.97) for the full model and 0.92 (95% CI, 0.89 to 0.95) for the simple model. The AUC statistics based on the external validation cohort were 0.97 (95% CI, 0.96 to 0.98) for the full model and 0.88 (95% CI, 0.80 to 0.96) for the simple model. Good calibration accuracy of these two models was found in the derivation and validation cohort. CONCLUSION: The prediction models showed good model performance in identifying patients with COVID-19 with a high risk of death in 60 days. It may be useful for acute risk classification. WEB CALCULATOR: We provided a freely accessible web calculator (https://www.whuyijia.com/).


Subject(s)
Algorithms , COVID-19/mortality , Hospitalization/statistics & numerical data , Pandemics , Risk Assessment/methods , SARS-CoV-2 , COVID-19/therapy , China/epidemiology , Follow-Up Studies , Humans , Prognosis , ROC Curve , Retrospective Studies , Risk Factors , Survival Rate/trends
17.
Orphanet J Rare Dis ; 15(1): 335, 2020 11 30.
Article in English | MEDLINE | ID: mdl-33256793

ABSTRACT

BACKGROUND: Phelan-McDermid syndrome (PMS) or 22q13 deletion syndrome is a rare developmental disorder characterized by hypotonia, developmental delay (DD), intellectual disability (ID), autism spectrum disorder (ASD) and dysmorphic features. Most cases are caused by 22q13 deletions encompassing many genes including SHANK3. Phenotype comparisons between patients with SHANK3 mutations (or deletions only disrupt SHANK3) and 22q13 deletions encompassing more than SHANK3 gene are lacking. METHODS: A total of 29 Mainland China patients were clinically and genetically evaluated. Data were obtained from medical record review and a standardized medical history questionnaire, and dysmorphology evaluation was conducted via photographic evaluation. We analyzed 22q13 deletions and SHANK3 small mutations and performed genotype-phenotype analysis to determine whether neurological features and other important clinical features are responsible for haploinsufficiency of SHANK3. RESULTS: Nineteen patients with 22q13.3 deletions ranging in size from 34 kb to 8.7 Mb, one patient with terminal deletions and duplications, and nine patients with SHANK3 mutations were included. All mutations would cause loss-of function effect and six novel heterozygous variants, c.3838_3839insGG, c.3088delC, c.3526G > T, c.3372dupC, c.3120delC and c.3942delC, were firstly reported. Besides, we demonstrated speech delay (100%), DD/ID (88%), ASD (80%), hypotonia (83%) and hyperactivity (83%) were prominent clinical features. Finally, 100% of cases with monogenic SHANK3 deletion had hypotonia and there was no significant difference between loss of SHANK3 alone and deletions encompassing more than SHANK3 gene in the prevalence of hypotonia, DD/ID, ASD, increased pain tolerance, gait abnormalities, impulsiveness, repetitive behaviors, regression and nonstop crying which were high in loss of SHANK3 alone group. CONCLUSIONS: This is the first work describing a cohort of Mainland China patients broaden the clinical and molecular spectrum of PMS. Our findings support the effect of 22q13 deletions and SHANK3 point mutations on language impairment and several clinical manifestations, such as DD/ID. We also demonstrated SHANK3 haploinsufficiency was a major contributor to the neurological phenotypes of PMS and also responsible for other important phenotypes such as hypotonia, increased pain tolerance, impulsiveness, repetitive behaviors, regression and nonstop crying.


Subject(s)
Autism Spectrum Disorder , Chromosome Disorders , Autism Spectrum Disorder/genetics , China , Chromosome Deletion , Chromosome Disorders/genetics , Chromosomes, Human, Pair 22/genetics , Genetic Association Studies , Haploinsufficiency/genetics , Humans , Nerve Tissue Proteins/genetics , Phenotype
18.
Front Genet ; 11: 616, 2020.
Article in English | MEDLINE | ID: mdl-32733533

ABSTRACT

Simple copy number variations (CNVs) detected by chromosomal microarray (CMA) can result from complex structural changes. Therefore, it is necessary to characterize potential structural changes that cause pathogenic CNVs. We applied whole-genome low-coverage sequencing (WGLCS) to concurrently detect pathogenic CNVs and their associated chromosomal rearrangements in 15 patients. All the patients had an average of 2-3 pathogenic CNVs involving 1-2 chromosomes. WGLCS identified all the 34 pathogenic CNVs found by microarray. By identifying chimeric read pairs, WGLCS mapped 70 breakpoints in these patients, of which 47 were finely mapped at the nucleotide level and confirmed by subsequent PCR amplification and Sanger sequencing of the junction fragments. In 15 patients, structural rearrangements were defined at molecular level in 13 patients. In 13 patients, WGLCS reveal no additional results in two patients. In another 11 patients, WGLCS revealed new breakpoints or finely mapped the genes disrupted by breakpoints or 1-6 bp microhomology and/or short insertion (4-70 bp) in the breakpoints junctions. However, structural changes in the other two patients still remained unclear after WGLCS was performed. The structural alteration identified in the 13 patients could be divided into the following categories: (1) interstitial inverted duplication with concomitant terminal deletion (inv dup del) (P1,P4,P9,P11); (2) the product of pericentric inversion (P5); (3) ring chromosome (P8); (4) interstitial duplication and/or triplication (P6, P7); and (5) +der(22)t(11;22) (P2,P15); (6) complex structural rearrangements (P3,P12,P14). WGLCS displayed the ability to discover CNVs and define breakpoints and its disrupted genes and its surrounding sequences in one experiment at base-pair-resolution, which help us to learn more about the mechanisms of formation of observed genomic rearrangements, and in which DNA replicative/repair mechanism might contribute to the formation of complex rearrangements in 11 patients. Clear karyotype at molecular level could help provide an accurate evaluation of recurrent risk and guide prenatal diagnosis or reproductive planning.

19.
Ann Hum Genet ; 84(6): 456-462, 2020 11.
Article in English | MEDLINE | ID: mdl-32776513

ABSTRACT

BACKGROUND: Variants perturbing the normal splicing of pre-mRNA can lead to human diseases. The splice-altering effect and eventual consequence on gene function was sometimes uncertain and hinders a definitive molecular diagnosis. METHODS: The impact of four rare intronic variants on splicing was analyzed through reverse transcription - polymerase chain reaction (RT-PCR) analysis of mRNA derived from the peripheral blood of patients. The results were compared with in-silico prediction. Potential implication on molecular diagnosis was discussed. RESULTS: Four rare intronic variants of SLC9A6, DLG3, GAA, and OCRL were identified in patients with suspected disorders, respectively. Although these four variants were all predicted to alter splicing by in-silico tools, RT-PCR analysis of mRNA derived from peripheral blood showed these variants affected splicing in different ways: c.899+3_899+6del of SLC9A6 resulted in one-exon skipping and an out-of-frame transcript; c.905-2A > G of DLG3 resulted in a mix of in-frame transcripts; c.1195-11T > A of GAA resulted in the in-frame insertion of nine nucleotides; c.723-2A > C of OCRL resulted in one-exon skipping and in-frame deletion of 102 nucleotides. The consequence revealed by mRNA analysis is essential for accurate interpretation of pathogenicity. CONCLUSION: Four intronic variants all caused aberrant mRNA splicing. For intronic variants with uncertain impact on splicing, mRNA analysis is helpful for ascertainment of alternative splicing and accurate interpretation of pathogenicity.


Subject(s)
Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/pathology , Mutation , RNA Splicing , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction/methods , Child, Preschool , Developmental Disabilities/genetics , Developmental Disabilities/pathology , Glycogen Storage Disease Type II/genetics , Glycogen Storage Disease Type II/pathology , Humans , Infant , Male , Microcephaly/genetics , Microcephaly/pathology , Nuclear Proteins/genetics , Oculocerebrorenal Syndrome/genetics , Oculocerebrorenal Syndrome/pathology , Phenotype , Phosphoric Monoester Hydrolases/genetics , Prognosis , RNA, Messenger/metabolism , Sodium-Hydrogen Exchangers/genetics , Transcription Factors/genetics , alpha-Glucosidases/genetics
20.
J Pediatr Endocrinol Metab ; 33(9): 1225-1229, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32687482

ABSTRACT

Objectives Congenital adrenal hyperplasia (CAH) is an autosomal recessive inherited disorder of steroidogenesis.11ß-hydroxylase deficiency and 17α-hydroxylase deficiency are two forms of CAH caused by defects of CYP11B1 and CYP17A1 respectively. Case presentation Two rare intronic variants were identified in suspected CAH patients. Though not located at the classic splicing sites, these two variants perturbed splicing based on minigene assays. One variant, NM_000497.4: c.240-157T>G of CYP11B1 identified in subject 1, resulted in the retention of 136 intronic nucleotides. The other variant, NM_000102.4: c.754-6 A>G of CYP17A1 identified in subject 2, leading to the retention of 5 intronic nucleotides. Both variants resulted in out-of-frame alteration of the respective transcript. Conclusion Cryptic splicing variants in the intronic regions contribute to the genetic defects of CAH. Minigene assay is useful to confirm the splice altering effect and make a definitive molecular diagnosis.


Subject(s)
Adrenal Hyperplasia, Congenital/etiology , Introns , Mutation , RNA Splicing , RNA, Messenger/genetics , Steroid 11-beta-Hydroxylase/genetics , Steroid 17-alpha-Hydroxylase/genetics , Adrenal Hyperplasia, Congenital/pathology , Adult , Child, Preschool , Female , Humans , Male , Prognosis , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...